Reactions of rhodium dihydride complexes $\left[\mathrm{RhH}_{2}(\mathrm{R}-\mathrm{DAB})\right.$ $\left.\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]^{+}$with the acetylenes $\mathrm{CH}_{3} \mathrm{OOCC} \equiv \mathrm{CCOOCH}_{3}$ and $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$. Crystal structure of $\left[\overline{\mathrm{RhC}}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathbf{N}=\mathbf{C H C H}=\mathrm{NC}_{6} \mathrm{H}_{11}\right)\left\{\mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\} \mathrm{H}_{2} \mathrm{O}\right] \mathrm{ClO}_{4}$

Marta Iglesias, Carmen del Pino ${ }^{\star}$,
Instituto de Quimica Inorgánica, C.S.I.C. Serrano 113, 28006 Madrid (Spain)

Josep Ros,
Dpto. Quimica Inorgánica, Universitat Autónoma, Bellaterra, Barcelona (Spain)
Severino García Blanco and Sagrario M. Carrera
Dpto. Cristalografia, Instituto Rocasolano, C.S.I.C. Serrano 119, 28006 Madrid (Spain)
(Received June 2nd, 1987)

Abstract

The products of the reactions between a series of rhodium cis-dihydrides cations $\left[\mathrm{RhH}_{2}(\mathrm{R}-\mathrm{DAB})\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]^{+}(\mathrm{A})$ and the alkynes $\mathrm{CH}_{3} \mathrm{OOCC} \equiv \mathrm{CCOOCH}_{3}$ (DMAD) and $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ at room temperature and $40^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ reflux) have been characterized by ${ }^{1} \mathrm{H}$ NMR, IR spectroscopy and elemental analysis. Hydrogen evolution was observed in all the reactions and there was no evidence of insertion of the alkyne into the $\mathrm{Rh}-\mathrm{H}$ bond.

From DMAD compounds with a $1 / 1$ ratio $\mathrm{Rh} / \mathrm{DMAD}$ were obtained at room temperature but in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2}$ and one molecule of phosphine are eliminated and two mols of DMAD incorporated to give, by dimerization of the acetylene, a metallocyclopentadiene complex. The molecular structure of one of these complexes $\left[\mathrm{RhC}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)(\mathrm{c}-\mathrm{Hex}-\right.$ $\left.\mathrm{DAB}) \mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right] \mathrm{ClO}_{4}$, is reported. This compound, an intermediate in the cyclotrimerization of alkynes, crystallizes in the monoclinic system, space group $P 2_{1} / c$, unit cell dimensions: $a 16.720(1), b 12.357(1), c 21.573(1) \AA, \beta 106.53(1)^{\circ}$, $Z=4$. The structure was resolved by Patterson and Fourier methods and refined to R and R_{w} values of 0.062 and 0.045 respectively.

Cyclotrimerization was observed in all the reactions of $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ with A and crystals of composition $\mathrm{C}_{24} \mathrm{H}_{18},\left(\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{3}$, obtained. An intermediate com-

pound, with a $1 / 2$ ratio of $\mathrm{Rh} / \mathrm{HC}_{\mathrm{C}} \mathrm{CC}_{6} \mathrm{H}_{5}$, with composition $\left[\mathrm{Rh}\left(\mathrm{NH}_{2}-\right.\right.$ DAB. $\left.\left.\mathrm{CH}_{3} \mathrm{CH}_{3}\right\}\left(\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]\left[\mathrm{ClO}_{4}\right]$ has also been isolated.

Introduction

Hydrides of transition metals generally react with olefins or acetylenes by insertion into the $\mathrm{M}-\mathrm{H}$ bond; many examples can be found in the literature $[2-4]$. cis-Dihydride complexes behave differently when treated under mild conditions with π-acids, losing molecular hydrogen by reductive elimination and producing η^{2}-alkynes. With an excess of the acetylene under reflux, metallocyclopentadiene complexes can be obtained as a result of a cyclodimerization of the acetylene [5]. Reductive elimination of bydrogen from hydride complexes is favoured by the presence of a good π-acceptor ligand, which stabilizes the lower valent metal product through increased back-bonding [4,6]. Alkynes bearing electron-withdrawing substituents readily undergo cyclodimerization; the metallocyclopentadiene complexes are intermediates in the catalytic trimerization of alkynes to arenes $[7.8]$.
cis-Dihydrides of transition metals have received considerable attention in recent years as catalysts for the hydrogenation of unsaturated organic molecules. Very little is known about catalytic reactions involving diazabutadienc complexes in which the diazabutadiene ligand $\mathrm{R}-\mathrm{DAB}\left[1^{*}\right]$ is not activated $[9,10]$. In binuclear complexes it has been seen that M-R-DAB systems in which the R-DAB is activated are excellent precursors for the regiospecific cyclotrimerization of acetylenes [8.11.12]

As part of our research on cationic rhodium cis-dihydrides with diazabutadienes. $\mathrm{R}-\mathrm{DAB}$ and phosphine ligands [13], of general formula $\left[\mathrm{Rh} \mathrm{H}_{2}(\mathrm{R}-\mathrm{DAB}) \mathrm{R}^{\prime}\left(\mathrm{PR}_{3}\right)_{2}\right\}^{+}$ $[\mathrm{X}]$ (A) $\left.\left(\mathrm{X}=\mathrm{ClO}_{4}, P F_{6}\right)[]^{*}\right]$, we report here our results on the reactions of such cations with the activated alkyne $\mathrm{CH}_{3} \mathrm{OOCC} \equiv \mathrm{COOOCH}_{3}$. DMAD and the non activated $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$. The molecular structure of $\left[\mathrm{RhC}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}\right.$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NC}_{6} \mathrm{H}_{2}\right) / \mathrm{PCH}_{3}\left(\mathrm{~K}_{6} \mathrm{H}_{5}\right)\right) \mathrm{H}_{2} \mathrm{O}\right) \mathrm{ClO}_{4}$ is also described.

Experimental

All reactions and manipulations were carried out under N_{2} by Schlenk techniques, and at room temperature unless otherwise specified. Reagent grade commercial starting materials were used without purification. Solvents were carefully dried. purified, and degassed before use.

The ${ }^{1}$ H NMR spectra were recorded on a Bruker WM- 360 Fourier spectrometer with saturated solutions of the complexes in CDCl_{3}. Infrared spectra were recorded with a Nicolet 60SX (FTIS) Spectrometer using KBr discs. Conductivities were determined in acetone solution with a Philips $9501 / 01$ Conductimeter. C. H and N . analyses were performed at the Inorganic Chemistry Department of Alcala de Henares University (Madrid).

The syntheses of the salts $\left[\mathrm{RhH}_{2}(\mathrm{R}-\mathrm{DAB})\left(\mathrm{PR}_{;}\right)_{2} \mid \mathrm{X}(\mathrm{A})\right.$ have been described previously [13].

[^0]Table 1
${ }^{1} \mathrm{H}$ NMR parameters of the products of reactions of $\left[\mathrm{RhH}_{2}(\mathrm{R}-\mathrm{DAB})\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right] \mathrm{X}$ with DMAD ${ }^{a}$

Compound	R-DAB resonances				Phosphine resonances		CH_{3} (DMAD) resonances	
	c- $\mathrm{Hex}=\mathrm{CHCH}=\mathrm{c}-\mathrm{Hex}$							
	Himine	Δ	c-Hex	\triangle		Δ		Δ
$\begin{gathered} 1[\mathrm{Rh}(\mathrm{DMAD})(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})- \\ \left(\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}\right\}_{2} /\left[\mathrm{ClO}_{4}\right] \end{gathered}$	8.52 ($\mathrm{s}, 2 \mathrm{H})$	0.58	1a 2.75 (t,2H)	-0.42	$\begin{aligned} & o 7.31(\mathrm{~m}, 12 \mathrm{H}) \\ & m 7.19(\mathrm{~m}, 12 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 3.90 \\ & 3.866 \mathrm{H} \\ & 3.83 \end{aligned}$	$\begin{array}{r} 0.04 \\ 0.00 \\ -0.03 \end{array}$
			$\begin{array}{ll} 2 \mathrm{e}=6 \mathrm{e} & 1.44 \\ 3 \mathrm{e}=5 \mathrm{e} & \end{array}$	-0.38				
				-0.26				
			$\begin{aligned} & 3 e=5 e \\ & 4 e 1.27 \end{aligned}$	-0.43				
			$2 \mathrm{a}=6 \mathrm{a} 0.82$	-0.7				
				-0.67				
			$4 \mathrm{a} \quad 0.68$	-0.55				
$\begin{gathered} \mathbf{1}^{\prime}\left[\mathrm{Rh}(\mathrm{DMAD})_{2}(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})-\right. \\ \left\{\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}\right\}\left[\mathrm{ClO}_{4}\right] \end{gathered}$	$\begin{aligned} & 8.72(\mathrm{~s}, 1 \mathrm{H}) \\ & 8.54(\mathrm{~s}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.6 \end{aligned}$	1a 2.81 (t, 2H)	-0.36	$\begin{aligned} & o 7.32(\mathrm{~m}, 6 \mathrm{H}) \\ & m 7.19(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 3.83(\mathrm{~d}, 6 \mathrm{H}) \\ & 3.57(\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & -0.03 \\ & -0.29 \end{aligned}$
			$\begin{aligned} & 2 \mathrm{e}=6 \mathrm{e} 1.44 \\ & 3 \mathrm{e}=5 \mathrm{e}=4 \mathrm{e} 1.27 \\ & 2 \mathrm{a}=6 \mathrm{a} 0.86 \end{aligned}$	-0.38				
				-0.43				
				-0.66				
			$\begin{aligned} & 2 \mathrm{a}=6 \mathrm{a} 0.86 \\ & 3 \mathrm{a}=5 \mathrm{a} \quad 0.69 \\ & 4 \mathrm{a} \end{aligned}$	-0.66				
				-0.54				
$2\left[\mathrm{Rh}(\mathrm{DMAD})(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})\left\{\mathrm{PPh}_{3}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]$	8.45 (s,2H)	0.51	$\begin{aligned} & \text { 1a } 2.72(\mathrm{t}, 2 \mathrm{H}) \\ & \text { rest. } 0.5-2 \end{aligned}$	-0.45	o,m,p $7.48(\mathrm{~m}, 30 \mathrm{H})$	0.14	3.90 (br,6H)	0.04
$2^{r}\left[\mathrm{Rh}(\mathrm{DMAD})(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})\left\{\mathrm{PPh}_{3}\right\}\right]\left[\mathrm{PF}_{6}\right]$	$\begin{aligned} & 8.48(\mathrm{~s}, 1 \mathrm{H}) \\ & 8.33(\mathrm{~d}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.39 \end{aligned}$	1a $2.74(\mathrm{t}, 2 \mathrm{H})$$2 \mathrm{e}=6 \mathrm{e} 1.78$	-0.43	$\begin{aligned} & m, p 7.50(\mathrm{~m}, 9 \mathrm{H}) \\ & o 7.39(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 3.63(\mathrm{~s}, 6 \mathrm{H}) \\ & 3.53(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & -0.23 \\ & -0.33 \end{aligned}$
				-0.04				
			$\begin{aligned} & 3 \mathrm{e}=5 \mathrm{e}=4 \mathrm{e} 1.41 \\ & 2 \mathrm{a}=6 \mathrm{a} 1.15-1.40 \end{aligned}$	-0.29				
				-0.22				
			$\begin{aligned} & 3 \mathrm{a}=5 \mathrm{a} \quad 0.5-1 \\ & 4 \mathrm{a} \end{aligned}$	-0.60				
$\begin{gathered} 3\left[\mathrm{Rh}\left(\mathrm{DMAD}^{3}\right)(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})-\right. \\ \left.\left\{\mathrm{PMePh}_{2}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right] \end{gathered}$	$\begin{aligned} & 8.45(\mathrm{~s}, 1 \mathrm{H}) \\ & 8.39(\mathrm{~d}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \text { 1a } 2.72(\mathrm{t}, 2 \mathrm{H}) \\ & 2 \mathrm{e}=6 \mathrm{e} 1.48 \end{aligned}$	-0.45	$\begin{aligned} & \mathrm{CH}_{3} 1.95(\mathrm{~s}, 6 \mathrm{H}) \\ & o, m, p 7.44(\mathrm{~m}, 20 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.02 \end{aligned}$	3.80	-0.06
				-0.34			3.71	-0.15
			$3 \mathrm{e}=5 \mathrm{e}=4 \mathrm{e} 1.39$	-0.31			3.67	-0.19
			2a,6a	-0.74				
			3a,5a 0.78	-0.55				
			4 a	-0.45				

Table I (continued)

$\begin{gathered} 3^{r}\left[\mathrm { Rh } \left(\mathrm{DMAD}_{2}(\mathrm{c}-\mathrm{Hex}-\mathrm{DAB})-\right.\right. \\ \left.\left.\left[\mathrm{PMePh}_{2}\right\}\right][\mathrm{ClO})_{4}\right] \end{gathered}$	$\begin{aligned} & 8.38(\mathrm{~s}, 1 \mathrm{H}) \\ & 8.30(\mathrm{~d} .1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 1 a 2.85(\mathrm{l}, 2 \mathrm{H}) \\ & 2 e=6 e 1.49 \\ & 3 e-5 e=4 e 1.40 \\ & 2 \mathrm{a} .6 \mathrm{a} \\ & 3 \mathrm{a} .5 \mathrm{a} \\ & 4 \mathrm{a} \end{aligned}$	$\begin{gathered} -0.32 \\ -0.33 \\ -0.30 \\ -0.89 \\ -0.72 \\ -0.6 \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{3} 1.92(\mathrm{s.3H}) \\ & o, m . p .7 .49(\mathrm{~m} .10 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 3.80 \\ & 3.7012 \mathrm{H} \\ & 3.68 \end{aligned}$	$\begin{array}{r} -0.06 \\ -0.14 \\ -0.20 \end{array}$
	$1-\mathrm{Bu}=\mathrm{CHCH}=1-\mathrm{Bu}$							
	CHimine	S	t-Bu	1				
$\begin{gathered} 6 \mid \mathrm{Rh}(\mathrm{DMAD})(t-\mathrm{Bu} u-\mathrm{DAB})- \\ \left.\left.\left\{\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}\right\}\right] \mathrm{PF}_{6}\right] \end{gathered}$	$8.64(\mathrm{~s}, 2 \mathrm{H})$	0.75	3. 56 (5.18 H)	-0.74	$\begin{aligned} & 07.50(\mathrm{~m}, 6 \mathrm{H}) \\ & n, 7.01(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 3.89 \\ & 3.80 \end{aligned} \mathrm{HH}$	$\begin{array}{r} 0.03 \\ -0.06 \end{array}$
	8,66:2H1)	4.33	389818 Hf	4.71	$\begin{aligned} & " .75(\mathrm{~m} .9 \mathrm{H}) \\ & 2.37(\mathrm{~m} .12 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.03 \end{aligned}$	$3906 \mathrm{H}$	$\begin{array}{r} 0.04 \\ 0.08 \end{array}$
$\begin{aligned} & 5\left(\mathrm { Rh } \left(\mathrm{DMAD}^{(1)(-\mathrm{Bu}-\mathrm{DAB})-}\right.\right. \\ & \left.\left(\mathrm{PMePh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right] \end{aligned}$	8.73 (5.2H)	0.80	3.79 (s.18H)	- 0.54	$\begin{aligned} & a . m, p 7.44(\mathrm{~m}, 20 \mathrm{H}) \\ & C \mathrm{H}_{3} 2.06(\mathrm{~s}, \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.07-0.03 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 3.87 \\ & 3.76 \end{aligned} 6$	$\begin{aligned} & 0.01 \\ & 0.10 \end{aligned}$
	8.75 (2.2 H)	0.82	1.01 ($\mathrm{s}, 18 \mathrm{H}$)	--4.29	$\begin{aligned} & \mathrm{CH}_{2} 1.57(\mathrm{~m}, 6 \mathrm{H}) \\ & \mathrm{CH}_{3} 0.99(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$	$\begin{array}{r} 0.18 \\ -0.06 \end{array}$	$\begin{aligned} & 3.80 \\ & 3.68 \end{aligned} \mathrm{HH}$	$\begin{array}{r} -0.06 \\ -0.18 \end{array}$
	$\left.\mathrm{NH}_{2} \mathrm{~N}=\mathrm{ClCH}, \mathrm{ClCH}_{3}\right)=\mathrm{NNH}_{2}$							
	$\left(\mathrm{CH}_{3}\right)$ imine	J	NH_{2}	Δ				
$\begin{gathered} 8\left[\mathrm{Rh}\left(\mathrm{DMADONH}-\mathrm{DAB}_{2} \mathrm{CH}_{3}\right)\right. \\ {\left[\mathrm{P}\left(p-\mathrm{C}_{4} \mathrm{~F}_{3}: \mathrm{IClO}_{4}\right]\right.} \end{gathered}$	47(6,6H)	-0.50	5.16 (s.4H)	- 0.17	$\begin{aligned} & =7.56(\mathrm{~m} .6 \mathrm{H}) \\ & m 7.15(\mathrm{~m} .6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 3.92 \\ & 3.7964 \\ & 3.69 \end{aligned}$	$\begin{array}{r} 0.06 \\ -0.07 \\ 0.17 \end{array}$
```q\|R(DMAD)NH2-DAB-CH (PPh}\mp@subsup{)}{3}{},\mp@subsup{]}{[(CO}{4```	(.419 (960)	0.57	5.19 (s.4H)	- 1.14	$\begin{aligned} & 0759(\mathrm{~m} .12 \mathrm{H}) \\ & m+p 743(\mathrm{~m} .1 \mathrm{BH}) \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.09 \end{aligned}$	$\frac{3.89}{3.82} 6 \mathrm{H}$	$\begin{array}{r} 0.03 \\ -0.04 \end{array}$
5 (RhDMAD)(NH2 $-\mathrm{DAB}-\mathrm{CH}_{3}$ ) $\left.\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)$	$\begin{aligned} & 1.40(6,3 H) \\ & 1,26(6,3 H) \end{aligned}$	$\begin{array}{r} -11.57 \\ -1.71 \end{array}$	$520(5.414)$	813	$\begin{aligned} & \because 7.50(\mathrm{~m} .6 \mathrm{H}) \\ & m+p 7.40(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0,06 \end{aligned}$	3906 H	0.05
$\begin{aligned} & \text { to } \mathrm{RHODMAD}_{3} \mathrm{NH}_{2}-\mathrm{DAB}\left(\mathrm{CH}_{3}\right)- \\ & \left.\left(\mathrm{PMePh}_{2}\right)_{2} \mathrm{HCO}_{4}\right\} \end{aligned}$	(.45 (5.6H)	0.52	$5.25(8.4 H)$	$\cdots 008$	$\begin{aligned} & 17.50(\mathrm{~m} .8 \mathrm{H}) \\ & m \cdot p 7.39(\mathrm{~m} .12 \mathrm{H}) \\ & c H .208(\mathrm{~s} .6 \mathrm{H}) \end{aligned}$	$\begin{array}{r} 0.03 \\ 0.02 \\ 0.41 \end{array}$	3.78613	0.08
```HlRhDMADMNH, IOAR-(H) (PLt,), PP [```	1.43(0.6H)	- 1.5	$530(\times 41 \%$	16.3	$\begin{aligned} & \mathrm{HH}_{2} 1.63(\mathrm{~m} .6 \mathrm{H} \\ & \mathrm{CH}_{3} \mathrm{I} .19(\mathrm{~m} .9 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.14 \end{aligned}$	3886 H	0.02
$\left.\left(\mathrm{PEt}_{3}\right) \mathrm{HP}_{\mathrm{a}}\right)$	$\begin{aligned} & 1.42(6,310) \\ & 1.23(5,3 H) \end{aligned}$	$\begin{aligned} & -0.55 \\ & -6.74 \end{aligned}$	629(s.411)	- 0.14	CH. $1.60(\mathrm{~m} .6 \mathrm{H})$ $\mathrm{CH}, 1.00(\mathrm{~m} .9 \mathrm{H})$	0.21 0.39	$\begin{aligned} & 3.86 \\ & 3.80 \end{aligned}: 211$	0.01 -0.05

Table 1a
Elemental analyses for compounds listed in Table 1 ((calc.) found (\%))

	C	H	N
$\mathbf{1}$	(56.2)	(4.5)	(2.3)
	55.7	4.1	1.9
$\mathbf{1 r}$	(51.5)	(4.7)	(2.7)
	$(51.0$	4.2	2.4
$\mathbf{2}$	(59.3)	(5.3)	(2.5)
	58.9	4.9	2.7
$\mathbf{2 r}$	(49.1)	(5.1)	(2.8)
	48.8	4.8	2.7
$\mathbf{3}$	(57.2)	(5.8)	(2.9)
	56.8	6.1	2.6
$\mathbf{3}$	(51.6)	(5.5)	(3.1)
	51.8	5.3	3.4
$\mathbf{6}$	(46.5)	(4.3)	(3.2)
	46.2	4.6	3.3
$\mathbf{4}$	(60.1)	(5.4)	(2.7)
	59.9	5.4	3.0
$\mathbf{5}$	(55.1)	(5.7)	(3.1)
	54.9	6.0	3.0
$\mathbf{7}$	(38.8)	(6.1)	(4.1)
	38.6	5.8	3.9
$\mathbf{8}$	(50.6)	(3.7)	(5.1)
	50.9	3.5	5.3
$\mathbf{9}$	(56.2)	(4.7)	(5.7)
$\mathbf{9 r}$	56.4	5.0	5.5
	(46.6)	(4.3)	(7.8)
$\mathbf{1 0}$	46.4	7.7	
	(50.3)	(6.5)	
$\mathbf{1 1}$	50.4	6.3	
$\mathbf{1 1}$	(30.9)	(4.9)	(9.0)
	31.1	5.1	8.9
	(34.6)	(5.3)	(7.3)

Reaction of \boldsymbol{A} with DMAD

A solution of $\mathbf{A}(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was treated with DMAD (0.5 mmol, 0.5 ml) at room temperature or heating under reflux for 3 h ; the solution turned red in both cases and immediately H_{2} evolution was observed. Concentration of the solution gave a viscous oil, to which ethyl ether was added to induce crystallization. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ /petroleum ether gave orange crystals. Yield 50%.

Spectroscopic data for the products are shown in Table 1, and analyses in Table 1a.

Reactions of \boldsymbol{A} with $\mathrm{HC} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$
The experimental procedure was as described above. When crystallization was induced, long off-white needles were obtained, along with the starting complex.

Table 2
Crystal data, details of data collection (at room temperature) and structure refinement

Crestal data	
Formula	$\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{PClRh}$
Crystal habit	orange, transparent. prisms
Crystal size (mm)	$0.15 \times 0.20 \times 0.25$
Symmetry	$2 / m$ monoclinic. $P 2$,
Unit cell determination	least squares fit from 95 reflection. $\left(\theta\left(\mathrm{Cu} \mathrm{~K}_{6}\right)<435^{\circ}\right)$
Unit cell dimensions (\AA)	$\begin{aligned} & 416.720(1) . b 12357(1), c 21.573(1) \\ & \beta 106.53(1)^{\circ} \end{aligned}$
Packing: V $\left(A^{3}\right)$, $\overline{ }$	4273.0451 .4
$D_{E}\left(\mathrm{~g} \mathrm{~cm}^{3}\right) \cdot M . F(000)$	1.44, 925.17,1920
Experimental data	
Technique	Four circle diffractometer: PW 1100
	Philips bisecting geometry
	Graphite oriented monochromator: $\mathrm{Cu}-\mathrm{K}$,
	Detector apertures $1^{\circ} \times 10$ up 9 max 65
	1 min refl.
Number of reflections:	
measured	8002
total independent data	7233
Observed data ($I>20$ (1)	6332
Range of $h k /$	018,014, -2424, (sin $\theta / \lambda)$ maxas 5
Value of R int.	0.047
Standard reflections	2 reflections every 90 min no samaten
Absorption coefficient	$47.77 \mathrm{~cm}{ }^{\text {- }}$
Solution and refinement [14]	
Solution mode	Patterson, Fourier and difference Fourier synthesis
Absorption correction [15]	applied after isotropic sefinement
Refinement mode	least squares or P 'sobserved reflections only. anisotropic for non hydrogen and isomopic for fixed li atoms
Parameters:	
Number of variables	514
Degrees of freedom	5818
Ratio of freedom	11.3
H -atoms	difference synthesis
Final shift/error	0.04 average
w-scheme [16]	empirical so as to give no trends in $\left.w^{2} F\right\rangle$ us $\left\langle F_{0}\right\rangle$ and $(\sin A / \lambda$
Max thermal value	$U_{22}\left(\mathrm{O}_{13}^{\prime}\right)=0.276$
ΔF final	1.58 ea - near Rhatom
Extinction correction	no correction applied
S	1.95
$R . R_{*}$	0.062 .0 .045
Computer and programs	VAX 11,750. XRAYBO[14], DIFABS [15] PFSOS [16!. PARST [17]
Alomic factors	neutral atoms and anomalous dispersion factors from International tables from ref. is

 (PMePh$)_{2} \mathrm{H}_{2} \mathrm{OJClO} 4$

The crystals were coated with paraffin oil and sealed in a Lindeman glass capillary tube. Crystal data and details of the processing procedure are given in Table 2. The rhodium atom was readily found from a Patterson map and all remaining non-hydrogen atoms were located by Fourier and difference Fourier synthesis. Isotropic refinement was calculated by full matrix least squares; at this point an absorption correction was made by Walker and Stuart's method [15], and the structure was refined by full matrix least squares methods with anisotropic thermal parameters. The H atoms were located from successive difference maps and were included in the refinement with isotropic thermal parameters of the atoms to which they are attached. Agreement factors are defined as $R=\Sigma|\Delta| / \Sigma\left|F_{\mathrm{o}}\right|$ and $R_{\mathrm{w}}=\left(\sum w^{2} / \sum w\left|F_{\mathrm{o}}\right|^{2}\right)^{1 / 2},\left(\Delta=\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)$.

A table of thermal parameters and lists of observed and calculated structure factors are available from the authors.

Results and discussion

(a) Reactions of \boldsymbol{A} with DMAD

The rhodium cis-dihydrides A react readily with an excess of DMAD in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature with evolution of hydrogen usually to give compounds of stoichiometry $\left[\mathrm{Rh}(\mathrm{DMAD})(\mathrm{R}-\mathrm{DAB})\left(\mathrm{PR}_{3}^{\prime}\right)_{2}\right]^{+}$with a $1 / 2 \mathrm{DMAD} / \mathrm{PR}_{3}^{\prime}$ ratio; see Scheme 1 (compounds 1, 2, 4, 5, 8, 9, 10) and Scheme 2 (compound B). The loss of one phosphine in the case of products 6, 7, 11, may be due to steric factors. For $\mathrm{PR}_{3}=\mathrm{PMePh}_{2}$, compound 3, with a $2 / 2 \mathrm{DMAD} / \mathrm{PMePh}_{2}$ ratio, is obtained.

When the reactions are carried out at $40^{\circ} \mathrm{C}\left(\mathrm{ClH}_{2} \mathrm{Cl}_{2}\right.$ reflux), phosphine is eliminated and two molecules of DMAD are incorporated; these are dimerized and form a metallacyclopentadiene complex (Scheme 2, C) with a $2 / 1 \mathrm{DMAD} / \mathrm{PR}_{3}$ ratio; this is the case with compounds, $\mathbf{1}^{r}, \mathbf{2}^{r}, \mathbf{3}^{r}, \mathbf{8}^{r}, \mathbf{1 0}^{r}$, in Table 1. The determination of the structure of compound $\mathbf{3}^{r}$ confirmed the formation of an intermediate species in the cyclotrimerization of alkynes; a redistribution of ligands has also been observed, as can be seen for complex \mathbf{D} in Scheme 2.

For $\mathrm{PR}_{3}^{\prime}=\mathrm{PEt}_{3}$ and $\mathrm{RDAB}=\mathrm{c}-\mathrm{Hex}-\mathrm{DAB}$, there is no reaction at room temperature, and under reflux decomposition occurs.

The compounds obtained are air stable and behave as $1 / 1$ electrolytes.

Spectroscopic characterization

The main infrared vibrations (cm^{-1}) observed for the $\left[\mathrm{Rh}(\mathrm{DMAD})_{n}(\mathrm{R}-\right.$ $\mathrm{DAB})\left(\mathrm{PR}_{3}\right)_{m} \mathrm{~J}^{+}(n, m=1,2)$ in KBr disks are: weak bands at $2980-2960 \mathrm{~cm}^{-1}$ attributed to $\nu(\mathrm{C}-\mathrm{H})_{\text {DMAD }} ; 1730-1710 \mathrm{~cm}^{-1}$, a structured strong broad absorption band due to $\boldsymbol{\nu}(\mathrm{C}=\mathrm{O})_{\text {DMAD }}$ and $\delta(\mathrm{C}-\mathrm{H})_{\text {DMAD }}$ at $1270-1250$. The $\nu(\mathrm{C}=\mathrm{C})$ and $\nu(\mathrm{C}=\mathrm{N})$ bands are observed at $1620 \mathrm{~cm}^{-1}$ with weak to medium intensity. The perchlorate anion gives a $\nu(\mathrm{Cl}-\mathrm{O})$ band at $1090 \mathrm{~cm}^{-1}$ and a $\nu(\mathrm{OClO})$ band at 610 cm^{-1}. No products derived from insertion of the alkyne into the $\mathrm{Rh}-\mathrm{H}$ bond were detected.
${ }^{1} \mathrm{H}$ NMR data are summarized in Table 1. The integrated ${ }^{1} \mathrm{H}$ resonances confirm the presence of 1 or 2 phosphine, 1 R-DAB, and 1 or 2 acetylene molecules in every complex, in agreement in each case with the elemental analysis. The compounds
$\left[\mathrm{Rn}(\mathrm{DMAD})\left\{\mathrm{NH}_{2}-\mathrm{DAB}\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right)\right\}\left(\mathrm{PEt}_{3}\right)\right] \times$
(11)
$\left[R h(D M A D)\left\{\left(N_{2}-D A B\right)\left(C_{3}, C H_{3}\right)\right\}\left(P R_{3}\right)_{2}\right] x$
$\left(\mathrm{PR}_{3}=\mathrm{P}\left(\mathrm{P}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~F}\right)_{3}, \mathrm{PPH}_{3}, \mathrm{PMePh}_{2}\right)$
8,9,10)
$[$ RHIDMAD)(t-But-DAB)(PRy)]x
$\left(p R_{3}-P\left(p-C_{5} H_{4} F\right)_{3}, P E t_{3}\right)$
(6.7)
Shene ? Compounds formed in the reactons of rhooium thoverdes with DMAD at ronm temperature.

A
н

Scheme 2. r.t. $=$ room temperature; $T=40^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ reflux); L.R. $=$ ligand redistribution.
have been grouped together for each R-DAB ligand in the basis of the basicity of the phosphine; those shown with the superscript " r " were obtained at $40^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ reflux).

When R-DAB ligands are coordinated to rhodium $\sigma-\mathrm{N}(1), \sigma-\mathrm{N}(2)$, imine protons give only one signal (Table 1); the appearance of two signals would raise the possibility of asymmetric coordination.

In view of the structure of compound $\mathbf{3}^{r}$, \mathbf{B}, we suggest that the interaction between an iminic carbon and an oxygen of the perchlorate is responsible for the double signal from this compound in solution. The cyclohexyl resonances appear in the range $\delta 0.5-2.85$ with a resolution that allowed us to distinguish between axial and equatorial protons. The column of Δ values, the difference between δ (complex) and δ (free ligand), shows that resonances shift upfield on complexation. They wcre expected to shift downfield, but the presence of aromatic rings in the phosphine coordinated to rhodium leads to aromatic ring current effects that are apparent in the δ-values of nearby protons and are superimposed on the downfield effect above mentioned.

For DMAD there is essentially no shift of the methyl ${ }^{1} \mathrm{H}$ resonances upon coordination [19]: $\delta 3.86 \mathrm{ppm}$ for the free ligand and $\delta 3.52-3.90 \mathrm{ppm}$ for the complex in CDCl_{3}. The compounds with two molecules of DMAD show a significant shift upfield.
 $\left.=\mathrm{CHCH}=\mathrm{NC}_{6} \mathrm{H}_{1}\right)\left\{\mathrm{PCH}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\} \mathrm{H}_{2} \mathrm{OlClO}_{4}(\mathrm{~B})$

The molecular structure of the cation of \mathbf{B} is illustrated in Fig. 1, with non-hydrogen atoms numbered. Atomic positional parameters and relevant bond length and bond angle data are given in Tables 3 and 4 .

The inner coordination sphere can be considered to be a distorted octahedron with the ligands distributed around the rhodium as shown in Fig. 2. The c-Hex-DAB ligand is $\sigma-\mathrm{N}(1), \sigma-\mathrm{N}(2)$ coordinated, with the skeleton $\mathrm{N}=\mathrm{CC}=\mathrm{N}$ practically planar; deviations from this least-squares plane are $<0.008 \AA$; the rhodium atom deviates from this plane by $0.05 \AA$; cyclohexyl rings on both imine N atoms are in the chair

 complex \mathbf{B}.
conformation with an average $\mathrm{C}-\mathrm{C}$ distance of $1.517(6) \AA$ and an average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle of $111.4(4)^{\circ}$. One of the rings shows high thermal vibration. The angle between the least-squres plane of the planar part of the cyclohexyl ring and the plane $\mathrm{N}=\mathrm{CC}=\mathrm{N}$ is 88°. The distances $\mathrm{Rh}-\mathrm{N}(1)$ and $\mathrm{Rh}-\mathrm{N}(2)$ are 2.107(5). 2.179(4) A. The angle $\mathrm{N}(1) \mathrm{Rh} \mathrm{N}(2)$ is $76.7(2)^{\circ}$ and $\mathrm{N}(1)=\mathrm{C}(2), \mathrm{N}(2)=\mathrm{C}(1)$ distances are $1.267(9), 1.281(8) \mathrm{A}$. If the $\mathrm{C}=\mathrm{N}$ distances in free and coordinated $\mathrm{c}-\mathrm{Hex}-\mathrm{DAB}$ are compared it can be seen that they lengthen on coordination: a comparison of these distances with those for coordinated ph-DAB, in complex $\left[\mathrm{RhH}_{2}(\mathrm{ph}-\mathrm{DAB})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{4}$ [13], $1.277(16)$ and $1.275(19) \AA$, reveals a longer $\mathrm{C}=\mathrm{N}$ distance arising from the better π-acceptor capability of ph-DAB. The same effect is seen for the distances $\mathrm{Rh}-\mathrm{N}(1), \mathrm{Rh}-\mathrm{N}(2)$, and the angle $\mathrm{N}(1) \mathrm{RhN}(2)$.

In the metallocyclic pentadiene ring formed by $\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6) \mathrm{Rh}$ the four carbon atoms form a plane with the rhodium atom at 0.12 A out of this plane. The bond lengths $C(6)=C(5)$ and $C(3)=C(4)$ are $1.349(8)$ and $1.362(8) \AA$ and are longer than the $\mathrm{C}=\mathrm{C}$ bonds in free butadiene, $1.341 \AA$. The angle $\mathrm{C}(3) \mathrm{RhC}(6)$ is $80.3(2)^{\circ}$. The least squares plane $C(3) C(4) C(5) C(6)$ makes an angle of $98.7(3)^{\circ}$ with the planar skeleton of c-Hex-DAB: other relevant least squares planes in the molecule are those formed by the atoms $\mathrm{N}(1) \mathrm{N}(2) \mathrm{PC}(3)$ and $\mathrm{C}(6) \mathrm{C}(3) \mathrm{N}(2) \mathrm{O}(1)$.

The $\mathrm{Rh}-\mathrm{P}$ distance is $2.361(2) \AA$, and the two phenyl rings of the phosphine ligand make an angle of $105.2(2)^{\circ}$.

A molecule of water taken up during crystallization completes the 6 -coordination at rhodium. It is important to note that one of the two hydrogen atoms. $\mathrm{H}(11)$ is

Table 3. Atomic parameters for complex 3^{r}, with thermal parameters as $U_{\mathrm{eq}}=\frac{1}{3} \Sigma\left(U_{i j} \cdot a_{i}^{\star} \cdot a_{j}^{\star} \cdot a_{i} \cdot a_{j}\right.$. $\left.\cos \left(a_{i}, a_{j}\right) \times 10^{4}\right)$

Atom	x	y	z	$U_{\text {eq }}$
Rh	0.24226 (3)	0.16731(4)	0.39337(2)	412(1)
Cl	0.6296(1)	0.1222(1)	0.4245(1)	663(7)
P	0.1495(1)	0.3026(1)	0.4079(1)	459(5)
$\mathrm{O}(1)$	0.2252(2)	0.0629(3)	0.4709(2)	564(16)
$\mathrm{O}(2)$	0.0919(3)	-0.0189(4)	0.3830(2)	655(18)
$\mathrm{O}(3)$	0.0022(2)	0.0552(3)	0.2989(2)	522(15)
$\mathrm{O}(4)$	0.0661(3)	0.0326(3)	$0.1786(2)$	607(17)
O(5)	0.0165(3)	0.2000 (3)	0.1824(2)	612(16)
$\mathrm{O}(6)$	0.1741(3)	0.2401 (4)	0.1467(2)	803(21)
$\mathrm{O}(7)$	0.2404 (3)	0.3727(3)	0.2084(2)	570(16)
$\mathrm{O}(8)$	0.3438(3)	0.4027(4)	0.3534(2)	766(21)
$\mathrm{O}(9)$	0.3869(4)	0.2692(4)	0.2999(2)	643(18)
$\mathrm{O}(10)$	$0.7135(3)$	0.1279(5)	0.4253(3)	1176(32)
$\mathrm{O}(11)$	0.5988(4)	0.2218(5)	0.4372(4)	1501(43)
O(12)	0.6213(4)	$0.0473(6)$	0.4689(4)	1509(40)
$\mathrm{O}(13)$	0.5803(5)	0.0857(8)	0.3647(3)	1871(50)
$\mathrm{N}(1)$	0.3197(3)	0.0464(4)	0.3726(2)	541(19)
N(2)	0.3646 (3)	$0.2057(4)$	0.4585 (2)	517(18)
C(1)	0.4202(4)	$0.1412(6)$	0.4513(3)	617(26)
C(2)	0.3971 (4)	0.0552(6)	0.4036 (3)	624(26)
C(3)	0.1390 (3)	0.1169(4)	0.3242(3)	407(19)
C(4)	0.1352(3)	0.1516 (4)	0.2635(2)	400(18)
C(5)	0.2021(3)	0.2279 (4)	0.2603(3)	420(20)
C(6)	0.2578(3)	0.2465(5)	0.3182(3)	458(20)
C(7)	0.0781(3)	$0.0437(5)$	0.3388 (3)	455(21)
C(8)	0.0703(3)	$0.1184(5)$	$0.2035(3)$	460(21)
C(9)	0.2028(3)	$0.2774(5)$	0.1993(3)	450(21)
C(10)	0.3340 (4)	0.3153(6)	0.3256 (3)	532(33)
C(01)	-0.0620(4)	-0.0072(6)	0.3140 (3)	610(26)
C(02)	-0.0490(4)	0.1828(7)	0.1225(4)	890(33)
$\mathrm{C}(03)$	0.2508(4)	0.4313(6)	0.1532(3)	733(31)
C(04)	$0.4614(4)$	0.3311 (7)	0.3025 (4)	952(38)
C(05)	0.1028(4)	$0.3794(5)$	$0.3355(3)$	563(23)
C(11)	$0.2938(4)$	-0.0403(6)	0.3221(3)	680(27)
C(12)	0.3516 (6)	-0.0539(9)	0.2807(4)	1280(54)
C(13)	$0.3134(7)$	-0.1405(9)	0.2301(5)	1379(60)
$\mathrm{C}(14)$	0.2984(8)	-0.2448(9)	0.2575(6)	1487(66)
C(15)	0.2471(9)	-0.2303(9)	0.3006 (7)	1843(88)
$\mathrm{C}(16)$	0.2823 (7)	$-0.1439(7)$	$0.3544(5)$	1345(57)
C(21)	$0.3856(4)$	$0.2884(5)$	0.5095(3)	565(23)
C(22)	0.3586(4)	$0.2518(6)$	0.5668(3)	727(29)
C(23)	$0.3727(5)$	$0.3377(7)$	0.6189(3)	907(36)
C(24)	$0.4635(5)$	0.3732(8)	0.6397(4)	959(38)
C(25)	$0.4880(5)$	0.4125(7)	0.5826 (4)	1012(41)
C(26)	0.4775 (4)	0.3221 (7)	$0.5305(3)$	826(32)
C(31)	0.1845 (4)	0.4143(5)	0.4640(3)	504(22)
C(32)	0.1551(5)	$0.4307(6)$	0.5176 (3)	714(30)
C(33)	0.1775(5)	$0.5222(7)$	0.5553(4)	886(37)
C(34)	0.2311(5)	0.5982(6)	0.5407(4)	844(36)
C(35)	0.2616(4)	$0.5828(5)$	0.4877(4)	703(29)
C(36)	$0.2377(4)$	$0.4905(5)$	0.4501(3)	623(26)
C(41)	0.0610(4)	0.2468(5)	0.4299(3)	487(21)
C(42)	-0.0200(4)	$0.2621(5)$	0.3915 (3)	623(26)
C(43)	-0.0856(4)	$0.2186(7)$	$0.4110(4)$	783(32)
C(44)	-0.0727(4)	0.1597(7)	$0.4678(4)$	768(32)
C(45)	0.0077(5)	0.1447(6)	0.5054(3)	658(28)
C(46)	0.0734(4)	0.1868(5)	0.4877(3)	553(23)

Table 4
Selected bond distances and angles for complex $\mathbf{3}^{r}$

Bond distances (A)			
Rh-P	$2.3612)$	Rh-O(1)	2.194(4)
$\mathrm{Rh}-\mathrm{Cl} 3)$	2.0326	Rh-C(6)	1.747
$\mathrm{Rh}-\mathrm{N}(1)$	$2.107(5)$	Rh-N(2)	$2174(4)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.281(8)$	$\mathrm{N}(2) \mathrm{Cl} 1)$	(2679
$\mathrm{N}(1) \mathrm{C}(11)$	1501 (8)	$\mathrm{N}(2) \mathrm{Cl}(2)$	$1+6983$
C(1) C(2)	1.151010	C(3) C(4)	1.3n¢ 8
(3 (3)-C 7 (1.46288	C(4)-C(8)	1.40\| ${ }^{1 / 3}$
C(4) C(5)	1.4809	(15) C(6)	1.344(8)
C(5) C(9)	14546	C(6)-C(10)	150283
(7 ($-\mathrm{O}(2)$	1.1988	(7 (O - 3)	1.5196
(3)-0(4)	$1182(7)$	(8)-0(5)	$1.348)$
(19) O (7)	1.32, 7	(9 (9) (6)	1.1927
C(10)-O(9)	1.30199	(0101 -0(3)	1488
C(02)-O(5)	$1.452(9)$	C(0) -Ot ${ }^{(1)}$	(44me
(104) O(9)	1.4490		
Bond angles (${ }^{\circ}$)			
$\mathrm{P}-\mathrm{Rh}-\mathrm{C}(6)$	90.223	O(1) Rh-N(1)	88.10
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{N}(2)$	86.5123	O(1) Rh-C(3)	46.492
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{C}(6)$	173.72 ($\mathrm{N}(1) \ldots \mathrm{Rh}-\mathrm{N}(2)$	76.7 .21
N(1)-Rh-C(3)	94.112	N(1)-Rh-C(6)	80.86
$\mathrm{N}(2)-\mathrm{Rh}-\mathrm{C}(3)$	$170.32)$	N(2)-Rh-C(6)	95.923
C(3)-Rh-C(6)	$80.3(2)$	C(3)-(14) C(5)	11464
$C(4)-C(5)-C(6)$	11345	Rh--C(3)-(4)	11404
$\mathrm{Rh}-\mathrm{C}(6) \mathrm{C}(5)$	117.34	Rhevele (2)	114.84
$\mathrm{Rh}-\mathrm{N}(2)-\mathrm{Cl}(1)$	11188		
Torsion angles (${ }^{\circ}$)			
$C(46)-C(41)-P-C(31)$	$-72.5(6)$	C(05)-P C(41)-C(46)	-175.76)
$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{N}(2)-\mathrm{C}(21)$	$-850(5)$	(122)-(2l)-N(2)-Rh	74.96
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{Rh}^{-\mathrm{C}(3)}$	$-177.9(5)$	$\mathrm{Rh} \mathrm{C} 3)-\mathrm{C}(4) \mathrm{C(5)}$	- 986
$C(3)-C(7)-O(3) \ldots C(01)$	-174.6(5)		

near $\mathrm{O}(12)$ of the perchlorate anion, giving an intermolecular contact of $1.675(6) \mathrm{A}$. and the other hydrogen, $\mathrm{H}(12)$, is near $\mathrm{O}(2)$ of a carbonyl group, giving an intramolecular contact of $1.937(4)$ A. The perchlorate oxygens show shori contacts

Fig. 2. Ligand disnitution aromnd the rhodium in complex \mathbf{B}.
with some carbon atoms of the complex cation: the most remarkable is the $\mathrm{C}(1)-\mathrm{O}(12)$ distance of $3.090(12) \AA$, which we suggest is responsible for the double signal from the imine proton in the ${ }^{1} \mathrm{H}$ NMR spectrum even of solutions.

(b) Reactions of $\left[\mathrm{RhH}_{2}(\mathrm{R}-\mathrm{DAB})\left(\mathrm{PR}_{3}\right)_{2}\right]$ with $H C \equiv C P h$

We extended the study to reactions with the non-activated alkyne $\mathrm{HC} \equiv \mathrm{CPh}$. The reactions are rapid and take place with hydrogen evolution. In all cases unchanged starting hydride was revealed along with off-white needles of composition $\mathrm{C}_{24} \mathrm{H}_{18}(\mathrm{HC} \equiv \mathrm{CPh})_{3}$; they were characterized by elemental analysis, mass spectrometry, and ${ }^{1} \mathrm{H}$ NMR spectroscopy. Their ${ }^{1} \mathrm{H}$ NMR spectra show two multiplets at 6.96 (ortho, 6 H) and 6.63 ppm (meta + para, 9 H), and a singlet $(3 \mathrm{H})$ at 5.85 ppm .

An intermediate species in the cyclotrimerization of $\mathrm{CH} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$ has been isolated for $\mathrm{NH}_{2} \mathrm{~N}=\mathrm{CCH}_{3} \mathrm{CCH}_{3}=\mathrm{NNH}_{2}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$; this complex, of composition $\left[\mathrm{Rh}\left(\mathrm{NH}_{2}-\mathrm{DAB}, \mathrm{CH}_{3}\right)(\mathrm{HC} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]$, shows the following resonances in its ${ }^{1} \mathrm{H}$ NMR spectrum: two signals at 7.43 and 7.29 ppm from the aromatic protons of the phosphine and $\mathrm{HC}=\mathrm{CPh}$ ligands; a singlet at 5.93 ppm from the $\mathrm{HC}=$ protons, a singlet at 5.04 ppm signal from the NH_{2} protons and two singlets at 1.43 and 1.24 ppm from the methyl-imine group. The fact that the two methyl imine groups have different chemical shifts may be an indication that the DAB ligand is joined asymmetrically to the metal owing to the steric effect of the CH_{3} groups. The tendency of this ligand to behave as monodentate has been noted previously [20].

The integrated ${ }^{1} \mathrm{H}$ resonances and the elemental analysis for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ (\% found/calc. 58.08 (58.3), 4.9 (4.7), 7.0 (7.2)) support the stoichiometry proposed above. A possible structure in agreement with these results is shown below:

Acknowledgements

Finantial support by CAICYT is gratefully acknowledged. M.I. thanks the Ministry of Education for a Predoctoral Fellowship.

References

$1 \mathrm{R}-\mathrm{DAB}, \mathrm{RN}=\mathrm{CHCH}=\mathrm{NR} ; \mathrm{R}=$ cyclohexyl or $\mathrm{t}-\mathrm{Bu}, \mathrm{R}-\mathrm{DABR}^{\prime}, \mathrm{RN}=\mathrm{CR}^{\prime} \mathrm{CR}^{\prime}=\mathrm{NR} ; \mathrm{R}=\mathrm{NH}_{2}, \mathrm{R}^{\prime}=$ $\mathrm{CH}_{3} \mathrm{PR}_{3}^{\prime}=\mathrm{P}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{3}, \mathrm{PPh}_{3}, \mathrm{PMePh}_{2}\right.$, or PF_{4}, Nomenclature acooding to son Koten and K. Vrieze, Adv. Organomet. Chem., 21 (1982) 151.

2 H.C. Clark, and C.R. Milne J. Organomet. Chem. 161 (1976) 51. D.W. Hart, and I Schwart ibid. 87 (1975) C11.
3 R.A. Sánchez-Delgado, and G. Wilkinson, J. Chem, Soc. Dalton Trans.. (1977) 804
4 T. Yoshida. T. Okano, and S. Otsuka, J. Am. Chem. Soc, 102 (1980) 5966: T. Yoshida, F. Okano, Y Ueda, and S. Otsuka, ibid., 103 (1081) 3411: T. Yoshida, W, 3. Young. T Sakaeda. T. Veda, S. Oisuka and J.A. Ibers, ibid., 105 (1983) 6273.
5 S. Otsuka, and A. Nakamura, Adv, Organomet. Chem., 14 (1976) 245.
6 K. Tatsumi. R. Hoffman, A. Yamamoto, and J.K. Stille. Bull. Chem. Soc. Jpa. 54 (1981) 1857
7 P.M. Maitlis, Ace. Chem. Res, 9 (1976) 93.
8 L.H. Staal, G. van Koten, K. Vrieze, B. van Santen and (.H. Stam, Inorg. Chem. 20 (1981) 3598
9 K.J. Cavell, D.J. Stufkens, and K. Vricze. Inorg. Chim. Acta, 47 (1980) 67.
10 H.W. Frühauf, F. Seils, R.I. Goddard, and M.I. Romao, Organometallies. 4 (1085) 445.
11 K. Vrieze and G. van Koten. Inorg. Chim. Acta. 100 (1985) 79.
12 F. Multer, C. van Koten, K. Vrace, B. Krinen, C.II. Stam. I. Chem. So. Chem Commun. (1986) 150
13 M. Iglesias, C. del Pino, and J.L. Nieto, Inorg. Chim. Acta. 119 (1986) 7
14 J.M. Stewart, F.A. Kundell, and J.C. Baldwing, The X-Ray 80 System version, Computer Scence Center. University of Maryland, College Park, MD (U.S.A.). 1980
15 N. Walker, and D. Stuart, Acta (ryst. A. 39 (1983) 158.
16 M. Martinez Ripoll. and F.H. Cano. PESOS hnstuto Rocasolano. C S.C. Madrid 1975
17 PARST M. Nardelly, Comput Chem., 7 (1983) 95
18 International Tables for X-ray Crystallography. Vol. 4, Birmingham. Kynoch Press. 1974
19 W.W. Henderson, B.T. Bancroft. R.E. Shepherd, and J.P. Fackler, Organometallics, 5 (1986) 506
20 M. Iglesias, A. Llorente, C. de Pino and A. Santos, J. Organomet Chem. 262 (1984) 103

[^0]: * Reference numbers with asterisks indicate notes in the list of references.

